Anime Face Generation Using DCGAN with Keras and TensorFlow

Anime Face generator

Generative Adversarial Networks (GANs) have revolutionized image synthesis. In this post, we walk through the implementation of a Deep Convolutional GAN (DCGAN) using Keras and TensorFlow, trained to generate 64×64 anime-style faces. Dataset Preparation The dataset consists of preprocessed anime faces resized to 64×64 pixels. Each image is normalized to the range [-1, 1] using the formula: Images are loaded using ImageDataGenerator with the following setup: Model Architecture Generator The generator maps a 100-dimensional noise vector to a 64×64 RGB image using a series of transposed convolutions. Discriminator The discriminator uses Conv2D layers to downsample images and classify them as real or fake. GAN Training The discriminator and generator are compiled separately: Training Loop Results This project demonstrates how a DCGAN built with Keras and TensorFlow can effectively generate realistic anime-style faces from random noise. By leveraging transposed convolutions in the generator and convolutional layers in the discriminator, the model learns to produce increasingly detailed images over time. While basic in architecture, the results highlight the potential of GANs in creative AI applications. With further improvements such as advanced loss functions, deeper networks, and richer datasets, the quality and diversity of generated outputs can be significantly enhanced.

Plant Disease Detection Using CNN

Plant Disease Detection

With the advancement of technology, agriculture has seen significant improvements, especially with the integration of machine learning techniques. One of the pressing challenges faced by farmers is the early detection of plant diseases. This project focuses on building a Convolutional Neural Network (CNN) to classify plant diseases from images, specifically targeting diseases in corn, potato, and tomato plants. Dataset The dataset used in this project consists of images of plant leaves affected by three common diseases: The images were stored on Google Drive and loaded into the Colab environment for preprocessing and training. Data Preprocessing The preprocessing steps involved: Model Architecture The CNN model was built using Keras with the following structure: The model was compiled using the Adam optimizer with a learning rate of 0.0001 and categorical crossentropy as the loss function. Model Training The model was trained for 50 epochs with a batch size of 128. Training and validation accuracy were monitored throughout the process. The model achieved a satisfactory accuracy, as indicated by the plotted training history. Model Evaluation After training, the model was tested on unseen data to evaluate its performance. The results showed a high accuracy rate, indicating the model’s effectiveness in identifying plant diseases. Results and Analysis The classification report and confusion matrix revealed that the model performed well across all three classes. Additionally, the ROC AUC score demonstrated the robustness of the model. Conclusion This project successfully developed a CNN model to classify plant diseases with high accuracy. Early detection can help farmers take preventive measures, minimizing crop loss and ensuring better yield. Further improvements could involve using a more diverse dataset and fine-tuning hyperparameters for enhanced accuracy.

Multi-Class Brain Tumor Detection Using Deep Learning

Brain tumor detection

Brain tumors are abnormal growths of cells in the brain that can be life-threatening. Early and accurate detection is crucial for effective treatment. Deep learning, specifically convolutional neural networks (CNNs), has revolutionized medical imaging by providing automated and accurate diagnoses. This project focuses on detecting different types of brain tumors using a deep learning model trained on MRI images. Dataset The dataset used in this project consists of MRI scans categorized into three tumor types and one non-tumor class: The dataset is divided into: Data Preprocessing Model Architecture The deep learning model is built using VGG16, a pre-trained CNN model, with modifications for multi-class classification. The architecture includes: Training Process Results and Analysis Conclusion This project successfully demonstrates the potential of deep learning for medical diagnosis, particularly in multi-class brain tumor detection. The VGG16-based model effectively classifies MRI images into four categories with high accuracy. Future Enhancements: References: